Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antimicrobial Stewardship and Healthcare Epidemiology ; 2(S1):s8-s9, 2022.
Article in English | ProQuest Central | ID: covidwho-2184926

ABSTRACT

Background: Healthcare facilities have experienced many challenges during the COVID-19 pandemic, including limited personal protective equipment (PPE) supplies. Healthcare personnel (HCP) rely on PPE, vaccines, and other infection control measures to prevent SARS-CoV-2 infections. We describe PPE concerns reported by HCP who had close contact with COVID-19 patients in the workplace and tested positive for SARS-CoV-2. Method: The CDC collaborated with Emerging Infections Program (EIP) sites in 10 states to conduct surveillance for SARS-CoV-2 infections in HCP. EIP staff interviewed HCP with positive SARS-CoV-2 viral tests (ie, cases) to collect data on demographics, healthcare roles, exposures, PPE use, and concerns about their PPE use during COVID-19 patient care in the 14 days before the HCP's SARS-CoV-2 positive test. PPE concerns were qualitatively coded as being related to supply (eg, low quality, shortages);use (eg, extended use, reuse, lack of fit test);or facility policy (eg, lack of guidance). We calculated and compared the percentages of cases reporting each concern type during the initial phase of the pandemic (April–May 2020), during the first US peak of daily COVID-19 cases (June–August 2020), and during the second US peak (September 2020–January 2021). We compared percentages using mid-P or Fisher exact tests (α = 0.05). Results: Among 1,998 HCP cases occurring during April 2020–January 2021 who had close contact with COVID-19 patients, 613 (30.7%) reported ≥1 PPE concern (Table 1). The percentage of cases reporting supply or use concerns was higher during the first peak period than the second peak period (supply concerns: 12.5% vs 7.5%;use concerns: 25.5% vs 18.2%;p Conclusions: Although lower percentages of HCP cases overall reported PPE concerns after the first US peak, our results highlight the importance of developing capacity to produce and distribute PPE during times of increased demand. The difference we observed among selected groups of cases may indicate that PPE access and use were more challenging for some, such as nonphysicians and nursing home HCP. These findings underscore the need to ensure that PPE is accessible and used correctly by HCP for whom use is recommended.Funding: NoneDisclosures: None

2.
Antimicrobial Stewardship and Healthcare Epidemiology ; 2(S1):s7, 2022.
Article in English | ProQuest Central | ID: covidwho-2184924

ABSTRACT

Background: Nursing home (NH) residents and staff were at high risk for COVID-19 early in the pandemic;several studies estimated seroprevalence of infection in NH staff to be 3-fold higher among CNAs and nurses compared to other staff. Risk mitigation added in Fall 2020 included systematic testing of residents and staff (and furlough if positive) to reduce transmission risk. We estimated risks for SARS-CoV-2 infection among NH staff during the first winter surge before widespread vaccination. Methods: Between February and May 2021, voluntary serologic testing was performed on NH staff who were seronegative for SARS-CoV-2 in late Fall 2020 (during a previous serology study at 14 Georgia NHs). An exposure assessment at the second time point covered prior 3 months of job activities, community exposures, and self-reported COVID-19 vaccination, including very recent vaccination (≤4 weeks). Risk factors for seroconversion were estimated by job type using multivariable logistic regression, accounting for interval community-incidence and interval change in resident infections per bed. Results: Among 203 eligible staff, 72 (35.5%) had evidence of interval seroconversion (Fig. 1). Among 80 unvaccinated staff, interval infection was significantly higher among CNAs and nurses (aOR, 4.9;95% CI, 1.4–20.7) than other staff, after adjusting for race and interval community incidence and facility infections. This risk persisted but was attenuated when utilizing the full study cohort including those with very recent vaccination (aOR, 1.8;95% CI, 0.9–3.7). Conclusions: Midway through the first year of the pandemic, NH staff with close or common resident contact continued to be at increased risk for infection despite enhanced infection prevention efforts. Mitigation strategies, prior to vaccination, did not eliminate occupational risk for infection. Vaccine utilization is critical to eliminate occupational risk among frontline healthcare providers.Funding: NoneDisclosures: None

3.
Antimicrob Steward Healthc Epidemiol ; 1(1): e35, 2021.
Article in English | MEDLINE | ID: covidwho-2050150

ABSTRACT

Objectives: To estimate prior severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among skilled nursing facility (SNF) staff in the state of Georgia and to identify risk factors for seropositivity as of fall 2020. Design: Baseline survey and seroprevalence of the ongoing longitudinal Coronavirus 2019 (COVID-19) Prevention in Nursing Homes study. Setting: The study included 14 SNFs in the state of Georgia. Participants: In total, 792 SNF staff employed or contracted with participating SNFs were included in this study. The analysis included 749 participants with SARS-CoV-2 serostatus results who provided age, sex, and complete survey information. Methods: We estimated unadjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for potential risk factors and SARS-CoV-2 serostatus. We estimated adjusted ORs using a logistic regression model including age, sex, community case rate, SNF resident infection rate, working at other facilities, and job role. Results: Staff working in high-infection SNFs were twice as likely (unadjusted OR, 2.08; 95% CI, 1.45-3.00) to be seropositive as those in low-infection SNFs. Certified nursing assistants and nurses were 3 times more likely to be seropositive than administrative, pharmacy, or nonresident care staff: unadjusted OR, 2.93 (95% CI, 1.58-5.78) and unadjusted OR, 3.08 (95% CI, 1.66-6.07). Logistic regression yielded similar adjusted ORs. Conclusions: Working at high-infection SNFs was a risk factor for SARS-CoV-2 seropositivity. Even after accounting for resident infections, certified nursing assistants and nurses had a 3-fold higher risk of SARS-CoV-2 seropositivity than nonclinical staff. This knowledge can guide prioritized implementation of safer ways for caregivers to provide necessary care to SNF residents.

4.
Epidemiology ; 33(5): 669-677, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1853260

ABSTRACT

BACKGROUND: US long-term care facilities (LTCFs) have experienced a disproportionate burden of COVID-19 morbidity and mortality. METHODS: We examined SARS-CoV-2 transmission among residents and staff in 60 LTCFs in Fulton County, Georgia, from March 2020 to September 2021. Using the Wallinga-Teunis method to estimate the time-varying reproduction number, R(t), and linear-mixed regression models, we examined associations between case characteristics and R(t). RESULTS: Case counts, outbreak size and duration, and R(t) declined rapidly and remained low after vaccines were first distributed to LTCFs in December 2020, despite increases in community incidence in summer 2021. Staff cases were more infectious than resident cases (average individual reproduction number, R i = 0.6 [95% confidence intervals [CI] = 0.4, 0.7] and 0.1 [95% CI = 0.1, 0.2], respectively). Unvaccinated resident cases were more infectious than vaccinated resident cases (R i = 0.5 [95% CI = 0.4, 0.6] and 0.2 [95% CI = 0.0, 0.8], respectively), but estimates were imprecise. CONCLUSIONS: COVID-19 vaccines slowed transmission and contributed to reduced caseload in LTCFs. However, due to data limitations, we were unable to determine whether breakthrough vaccinated cases were less infectious than unvaccinated cases. Staff cases were six times more infectious than resident cases, consistent with the hypothesis that staff were the primary drivers of SARS-CoV-2 transmission in LTCFs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Disease Outbreaks/prevention & control , Humans , Long-Term Care
5.
Ann Intern Med ; 174(5): 649-654, 2021 05.
Article in English | MEDLINE | ID: covidwho-1726736

ABSTRACT

BACKGROUND: Identifying occupational risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care workers (HCWs) can improve HCW and patient safety. OBJECTIVE: To quantify demographic, occupational, and community risk factors for SARS-CoV-2 seropositivity among HCWs in a large health care system. DESIGN: A logistic regression model was fitted to data from a cross-sectional survey conducted in April to June 2020, linking risk factors for occupational and community exposure to coronavirus disease 2019 (COVID-19) with SARS-CoV-2 seropositivity. SETTING: A large academic health care system in the Atlanta, Georgia, metropolitan area. PARTICIPANTS: Employees and medical staff members elected to participate in SARS-CoV-2 serology testing offered to all HCWs as part of a quality initiative and completed a survey on exposure to COVID-19 and use of personal protective equipment. MEASUREMENTS: Demographic risk factors for COVID-19, residential ZIP code incidence of COVID-19, occupational exposure to HCWs or patients who tested positive on polymerase chain reaction test, and use of personal protective equipment as potential risk factors for infection. The outcome was SARS-CoV-2 seropositivity. RESULTS: Adjusted SARS-CoV-2 seropositivity was estimated to be 3.8% (95% CI, 3.4% to 4.3%) (positive, n = 582) among the 10 275 HCWs (35% of the Emory Healthcare workforce) who participated in the survey. Community contact with a person known or suspected to have COVID-19 (adjusted odds ratio [aOR], 1.9 [CI, 1.4 to 2.6]; 77 positive persons [10.3%]) and community COVID-19 incidence (aOR, 1.5 [CI, 1.0 to 2.2]) increased the odds of infection. Black individuals were at high risk (aOR, 2.1 [CI, 1.7 to 2.6]; 238 positive persons [8.3%]). LIMITATIONS: Participation rates were modest and key workplace exposures, including job and infection prevention practices, changed rapidly in the early phases of the pandemic. CONCLUSION: Demographic and community risk factors, including contact with a COVID-19-positive person and Black race, are more strongly associated with SARS-CoV-2 seropositivity among HCWs than is exposure in the workplace. PRIMARY FUNDING SOURCE: Emory COVID-19 Response Collaborative.


Subject(s)
COVID-19/epidemiology , Health Personnel , Infectious Disease Transmission, Patient-to-Professional , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Pneumonia, Viral/epidemiology , Adult , COVID-19/ethnology , Cross-Sectional Studies , Female , Georgia/epidemiology , Humans , Male , Middle Aged , Occupational Diseases/ethnology , Pandemics , Personal Protective Equipment , Pneumonia, Viral/ethnology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Surveys and Questionnaires , United States/epidemiology
6.
Infect Control Hosp Epidemiol ; 43(11): 1664-1671, 2022 11.
Article in English | MEDLINE | ID: covidwho-1713057

ABSTRACT

OBJECTIVES: To determine the incidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel (HCP) and to assess occupational risks for SARS-CoV-2 infection. DESIGN: Prospective cohort of healthcare personnel (HCP) followed for 6 months from May through December 2020. SETTING: Large academic healthcare system including 4 hospitals and affiliated clinics in Atlanta, Georgia. PARTICIPANTS: HCP, including those with and without direct patient-care activities, working during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Incident SARS-CoV-2 infections were determined through serologic testing for SARS-CoV-2 IgG at enrollment, at 3 months, and at 6 months. HCP completed monthly surveys regarding occupational activities. Multivariable logistic regression was used to identify occupational factors that increased the risk of SARS-CoV-2 infection. RESULTS: Of the 304 evaluable HCP that were seronegative at enrollment, 26 (9%) seroconverted for SARS-CoV-2 IgG by 6 months. Overall, 219 participants (73%) self-identified as White race, 119 (40%) were nurses, and 121 (40%) worked on inpatient medical-surgical floors. In a multivariable analysis, HCP who identified as Black race were more likely to seroconvert than HCP who identified as White (odds ratio, 4.5; 95% confidence interval, 1.3-14.2). Increased risk for SARS-CoV-2 infection was not identified for any occupational activity, including spending >50% of a typical shift at a patient's bedside, working in a COVID-19 unit, or performing or being present for aerosol-generating procedures (AGPs). CONCLUSIONS: In our study cohort of HCP working in an academic healthcare system, <10% had evidence of SARS-CoV-2 infection over 6 months. No specific occupational activities were identified as increasing risk for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Health Personnel , Risk Factors , Delivery of Health Care , Immunoglobulin G
7.
J Am Med Dir Assoc ; 23(6): 942-946.e1, 2022 06.
Article in English | MEDLINE | ID: covidwho-1712740

ABSTRACT

OBJECTIVES: Estimate incidence of and risks for SARS-CoV-2 infection among nursing home staff in the state of Georgia during the 2020-2021 Winter COVID-19 Surge in the United States. DESIGN: Serial survey and serologic testing at 2 time points with 3-month interval exposure assessment. SETTING AND PARTICIPANTS: Fourteen nursing homes in the state of Georgia; 203 contracted or employed staff members from those 14 participating nursing homes who were seronegative at the first time point and provided a serology specimen at second time point, at which time they reported no COVID-19 vaccination or only very recent vaccination (≤4 weeks). METHODS: Interval infection was defined as seroconversion to antibody presence for both nucleocapsid protein and spike protein. We estimated adjusted odds ratios (aORs) and 95% CIs by job type, using multivariable logistic regression, accounting for community-based risks including interval community incidence and interval change in resident infections per bed. RESULTS: Among 203 eligible staff, 72 (35.5%) had evidence of interval infection. In multivariable analysis among unvaccinated staff, staff SARS-CoV-2 infection-induced seroconversion was significantly higher among nurses and certified nursing assistants accounting for race and interval infection incidence in both the community and facility (aOR 5.3, 95% CI 1.0-28.4). This risk persisted but was attenuated when using the full study cohort including those with very recent vaccination. CONCLUSIONS AND IMPLICATIONS: Midway through the first year of the pandemic, job type continues to be associated with increased risk for infection despite enhanced infection prevention efforts including routine screening of staff. These results suggest that mitigation strategies prior to vaccination did not eliminate occupational risk for infection and emphasize critical need to maximize vaccine utilization to eliminate excess risk among front-line providers.


Subject(s)
COVID-19 , COVID-19/epidemiology , Georgia/epidemiology , Humans , Nursing Homes , Pandemics , SARS-CoV-2 , United States
8.
Clin Infect Dis ; 74(10): 1755-1756, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1706262
9.
Front Public Health ; 9: 744535, 2021.
Article in English | MEDLINE | ID: covidwho-1566663

ABSTRACT

Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical. Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples. Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se = 89%, Sp = 99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R2 = 0.26). Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Health Priorities , Humans , Sensitivity and Specificity
10.
N Engl J Med ; 385(25): e90, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1434203

ABSTRACT

BACKGROUND: The prioritization of U.S. health care personnel for early receipt of messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), allowed for the evaluation of the effectiveness of these new vaccines in a real-world setting. METHODS: We conducted a test-negative case-control study involving health care personnel across 25 U.S. states. Cases were defined on the basis of a positive polymerase-chain-reaction (PCR) or antigen-based test for SARS-CoV-2 and at least one Covid-19-like symptom. Controls were defined on the basis of a negative PCR test for SARS-CoV-2, regardless of symptoms, and were matched to cases according to the week of the test date and site. Using conditional logistic regression with adjustment for age, race and ethnic group, underlying conditions, and exposures to persons with Covid-19, we estimated vaccine effectiveness for partial vaccination (assessed 14 days after receipt of the first dose through 6 days after receipt of the second dose) and complete vaccination (assessed ≥7 days after receipt of the second dose). RESULTS: The study included 1482 case participants and 3449 control participants. Vaccine effectiveness for partial vaccination was 77.6% (95% confidence interval [CI], 70.9 to 82.7) with the BNT162b2 vaccine (Pfizer-BioNTech) and 88.9% (95% CI, 78.7 to 94.2) with the mRNA-1273 vaccine (Moderna); for complete vaccination, vaccine effectiveness was 88.8% (95% CI, 84.6 to 91.8) and 96.3% (95% CI, 91.3 to 98.4), respectively. Vaccine effectiveness was similar in subgroups defined according to age (<50 years or ≥50 years), race and ethnic group, presence of underlying conditions, and level of patient contact. Estimates of vaccine effectiveness were lower during weeks 9 through 14 than during weeks 3 through 8 after receipt of the second dose, but confidence intervals overlapped widely. CONCLUSIONS: The BNT162b2 and mRNA-1273 vaccines were highly effective under real-world conditions in preventing symptomatic Covid-19 in health care personnel, including those at risk for severe Covid-19 and those in racial and ethnic groups that have been disproportionately affected by the pandemic. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , BNT162 Vaccine/administration & dosage , COVID-19/diagnosis , COVID-19/ethnology , COVID-19 Serological Testing , Case-Control Studies , Female , Humans , Immunization, Secondary , Male , Middle Aged , Polymerase Chain Reaction , United States
11.
Infect Control Hosp Epidemiol ; 43(3): 381-386, 2022 03.
Article in English | MEDLINE | ID: covidwho-1246283

ABSTRACT

Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May-June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2-10.5) and black race (OR, 8.4; 95% CI, 2.7-27.4) were associated with SARS-CoV-2 seropositivity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Cross-Sectional Studies , Delivery of Health Care , Health Personnel , Humans , Risk Factors
12.
JAMA Netw Open ; 4(3): e211283, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1125121

ABSTRACT

Importance: Risks for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care personnel (HCP) are unclear. Objective: To evaluate the risk factors associated with SARS-CoV-2 seropositivity among HCP with the a priori hypothesis that community exposure but not health care exposure was associated with seropositivity. Design, Setting, and Participants: This cross-sectional study was conducted among volunteer HCP at 4 large health care systems in 3 US states. Sites shared deidentified data sets, including previously collected serology results, questionnaire results on community and workplace exposures at the time of serology, and 3-digit residential zip code prefix of HCP. Site-specific responses were mapped to a common metadata set. Residential weekly coronavirus disease 2019 (COVID-19) cumulative incidence was calculated from state-based COVID-19 case and census data. Exposures: Model variables included demographic (age, race, sex, ethnicity), community (known COVID-19 contact, COVID-19 cumulative incidence by 3-digit zip code prefix), and health care (workplace, job role, COVID-19 patient contact) factors. Main Outcome and Measures: The main outcome was SARS-CoV-2 seropositivity. Risk factors for seropositivity were estimated using a mixed-effects logistic regression model with a random intercept to account for clustering by site. Results: Among 24 749 HCP, most were younger than 50 years (17 233 [69.6%]), were women (19 361 [78.2%]), were White individuals (15 157 [61.2%]), and reported workplace contact with patients with COVID-19 (12 413 [50.2%]). Many HCP worked in the inpatient setting (8893 [35.9%]) and were nurses (7830 [31.6%]). Cumulative incidence of COVID-19 per 10 000 in the community up to 1 week prior to serology testing ranged from 8.2 to 275.6; 20 072 HCP (81.1%) reported no COVID-19 contact in the community. Seropositivity was 4.4% (95% CI, 4.1%-4.6%; 1080 HCP) overall. In multivariable analysis, community COVID-19 contact and community COVID-19 cumulative incidence were associated with seropositivity (community contact: adjusted odds ratio [aOR], 3.5; 95% CI, 2.9-4.1; community cumulative incidence: aOR, 1.8; 95% CI, 1.3-2.6). No assessed workplace factors were associated with seropositivity, including nurse job role (aOR, 1.1; 95% CI, 0.9-1.3), working in the emergency department (aOR, 1.0; 95% CI, 0.8-1.3), or workplace contact with patients with COVID-19 (aOR, 1.1; 95% CI, 0.9-1.3). Conclusions and Relevance: In this cross-sectional study of US HCP in 3 states, community exposures were associated with seropositivity to SARS-CoV-2, but workplace factors, including workplace role, environment, or contact with patients with known COVID-19, were not. These findings provide reassurance that current infection prevention practices in diverse health care settings are effective in preventing transmission of SARS-CoV-2 from patients to HCP.


Subject(s)
COVID-19/epidemiology , Disease Hotspot , Disease Transmission, Infectious/statistics & numerical data , Health Personnel/statistics & numerical data , Occupational Exposure/statistics & numerical data , Adult , COVID-19/transmission , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Georgia/epidemiology , Humans , Illinois/epidemiology , Male , Maryland/epidemiology , Middle Aged , Residence Characteristics , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL